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Abstract

A pair of closed parametric equations are proposed to represent the Heaviside unit step function. Differentiating the step

equations results in two additional parametric equations, that are also hereby proposed, to represent the Dirac delta

function. These equations are expressed in algebraic terms and are handled by means of elementary algebra and elementary

calculus. The proposed delta representation complies exactly with the values of the definition. It complies also with the

sifting property and the requisite unit area and its Laplace transform coincides with the most general form given in the

tables. Furthermore, it leads to a very simple method of solution of impulsive vibrating systems either linear or belonging

to a large class of nonlinear problems. Two example solutions are presented.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

There are textbooks, mostly of pure mathematics, that avoid defining the Dirac delta function directly in
terms of its numerical values. Instead they tend to define it in terms of both a derivative and an integral. The
derivative is that of the Heaviside unit step, the integral is the fundamental or sifting property. However, they
also represent it by the most diverse approximations, i.e., limits of functions of either an e that tends to zero or
an n, which tends to infinity. These functions are either algebraic, exponential or transcendental or an Airy
function or the Bessel function of the first kind or a Laguerre polynomial [1], there are the Gaussian, the
Lorentzian and Kronecker representations [2] and others [3]. Some books state that those limits do not exist
[4]. The quest for a better representation seems to go on [5,6]. In most sources, they point out that the delta
function is not really a function and even Dirac referred to it as an ‘‘improper function’’ [7].

On the other hand, textbooks oriented to applications tend to define the Dirac delta as zero everywhere
except for a single value of the independent variable, where it takes the value of infinity and, furthermore, it
has a unit area. Nonetheless, they present the Dirac delta in an approximate form as a Fourier series or
trigonometric expansion (and a wavy plot) [8], or as the final product of a limiting process, i.e., a rectangle
growing ever taller and thinner with width equal to e and height equal to 1/e or a triangle likewise growing ever
taller and thinner with base 2e and height 1/e with e tending to a value of zero but each maintaining a unit area
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a a constant
F̂ impulsive force
h(x, a) riserless Heaviside unit step at x ¼ a

H(x, a) parametric Heaviside unit step (with a
riser) at x ¼ a

I impulse
L Laplace transform or length of pendulum

according to context
m mass
P constant, see Eq. (37)
s Laplace transform variable
t time
u parameter of the parametric representa-

tion. Length of the parametric unit step

(including the riser) measured from the
origin

y displacement
Y dimensionless displacement
x dimensionless independent variable
b t/t
d(x, a) Dirac delta at x ¼ a

l y/Y
t dimensionless time
( )i referring to impulse instant
( )p referring to post-impulse time
( )0 specific value

ð Þ
�

time derivative
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throughout the process, sometimes it is an elongated curve, defined only graphically, with vertical symmetry,
that goes up from zero ordinate to a non-specified height and returns to zero [9]. Textbooks of either
theoretical or applied emphasis state that the Dirac delta function is the derivative of the Heaviside unit step
but no differentiation is carried out. Then, after exhibiting a few examples involving the delta (at times with a
solution obtained with a somewhat unique reasoning [10]), often point out that in reality such a function does
not exist, for example, [4,9]. This is sometimes followed by the statement that the delta is a distribution. This is
an unsettling situation, particularly for the typical engineer who is not familiar with the theory of
distributions. Fortunately, there is the Laplace transform, which is particularly simple in the case of the Dirac
delta and works admirably well, but, unfortunately, it is restricted to linear problems.

In this work, an entirely different approach is used: a pair of parametric equations to represent the Dirac
delta are proposed. They are the result of an actual differentiation of another pair of parametric equations,
also proposed herein, to represent the Heaviside unit step. The proposed equations are expressed in common
algebraic terms, they are closed, exact and they do not require any inequalities. The delta equations have the
same function values as those specified in the definition, the area involved has a unit value, they comply with
the sifting property and yield the correct Laplace transform. In the solution of differential equations they are
handled by elementary calculus and algebra without resorting to any limiting process. Another advantage of
the proposed representation is that infinite and infinitesimal quantities can be dealt with indirectly.

As a very natural outcome of this parametric representation, a very simple procedure for solving impulsive
problems is developed. The applications refer both to linear problems and a large class of nonlinear problems.
The procedure, furthermore, reveals which system components participate in the dynamic process that takes
place during the impulse instant, and which do not.

2. The ‘‘riserless’’ Heaviside unit step

The Heaviside unit step function is usually defined as follows:

hðx; aÞ ¼ 0; xoa;

hðx; aÞ ¼ 1; x4a:
(1)

The following alternative single equations may be considered to represent the same function:

hðx; aÞ ¼
1

2
1þ

x� affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� aÞ2

q
2
64

3
75, (2a)
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hðx; aÞ ¼
1

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� aÞ2

q
x� a

2
4

3
5. (2b)

Long before Heaviside, Cauchy used the same step concept, which he called the ‘‘coefficient limitateur’’ and
defined it by Eq. (2a) [11]. This representation has been recently used to advantage in quite diverse research
work [12–16].

Fig. 1a is a graphical representation of either Eq. (1) or (2). The reason for using a lower case h in Eqs. (1)
and (2) rather than an upper case H used conventionally will be explained further on.

Note that Eq. (1) is made up of four relations, namely, two equations plus two inequalities, while any one of
the two forms of Eq. (2) is a single equation which contains the same information as all four Eq. (1), in this
sense it is ‘‘self-contained’’. The following two equations are differentiations performed on each of the two
forms of Eq. (2) in an attempt to see whether either one will yield a similarly self-contained equation for the
Dirac delta. Eq. (3a) is the derivative of Eqs. (2a) and (3b) is the derivative of Eq. (2b):

dhðx; aÞ

dx
¼

1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� aÞ2

q �
ðx� aÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� aÞ2

q� �3

2
6664

3
7775 ¼

0; xaa;

indeterminate; x ¼ a;

(
(3a)
Fig. 1. (a) Riserless Heaviside unit step, direct plot of Eq. (2a), but it represents Eqs. (1), (2a) or (2b), equally well. (b–d) Heaviside unit

step with a riser. (b) Direct plot of parametric Eq. (6b) versus (6a). (c) The independent variable versus the parameter u, a direct plot of Eq.

(6a). (d) The unit step versus the parameter u, a direct plot of Eq. (6b).
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dhðx; aÞ

dx
¼

1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� aÞ2

q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� aÞ2

q
ðx� aÞ2

2
64

3
75 ¼ 0; xaa;

indeterminate; x ¼ a:

(
(3b)

Thus, it is clear that this process did not yield the Dirac delta. In a way this negative result could have been
predicted because, geometrically, the derivative is the slope of the curve of Fig. 1a and there can hardly be any
slope associated with the non-existing portion of the curve, i.e., at the ‘‘jump ‘‘point x ¼ a. In architectural
terms: this step has no ‘‘riser’’. Incidentally, the results of the differentiation (Eq. (3)) have also established
that, when differentiating, the ‘‘riserless’’ unit step should be treated as a constant for x6¼a.

3. Heaviside unit step with a riser

3.1. Parametric representation

To remedy this situation the empty vertical portion of the curve may be filled, Fig. 1b. One way of doing this
is by resorting to a parametric representation. Note that in this paper a sharp distinction is made between the
lower case h and the upper case H. The lower case h is used exclusively to designate the riserless unit step of
Eqs. (1) and (2) and shown in Fig. 1a. The upper case H is used exclusively in connection with the parametric
representation of the unit step, which does have a riser, Fig. 1b. The parameter chosen is u, the length of the
unit step, in this paper it is measured from the origin but it can be measured from any convenient point in the
axis of abcissae. The following equations are established with reference to Fig. 1b:

uoa
x1 ¼ u;

H1 ¼ 0;

(
aouoaþ 1

x2 ¼ a;

H2 ¼ u� a;

(
u4aþ 1

x3 ¼ u� 1;

H3 ¼ 1:

(
(4)

Of course, u must have the same units whether it runs parallel to the horizontal or to the vertical axis or in
any other direction. This requirement is complied with by simply handling all the variables involved in
dimensionless form.

Eq. (4) for xj and Hj, j ¼ 1,2,3, are each concatenated into a single equation:

x ¼ x1 þ hðu; aÞ �x1 þ x2ð Þ þ hðu; aþ 1Þ �x2 þ x3ð Þ,

Hðx; aÞ ¼ H1 þ hðu; aÞ �H1 þH2ð Þ þ hðu; aþ 1Þ �H2 þH3ð Þ. ð5Þ

It is convenient to keep in mind that h is used in Eq. (5) as a switch. In the first equation, the first term is x1.
In the second term, due to the action of h(u,a) and the negative sign accompanying it, x1 is ‘‘switched off’’. In
this same second term, and also due to the action of h(u, a) and the positive sign accompanying it, x2 is
simultaneously ‘‘switched on’’. This switching is carried on at the point u ¼ a, of course.

Substituting Eq. (4) into Eq. (5) and simplifying yields what are hereby proposed as the parametric
equations of the Heaviside unit step with a riser:

x ¼ u� hðu; aÞ u� að Þ þ hðu; aþ 1Þ u� aþ 1ð Þ
� �

, (6a)

Hðx; aÞ ¼ hðu; aÞ u� að Þ � hðu; aþ 1Þ u� aþ 1ð Þ
� �

. (6b)

Fig. 1b represents H(x, a) versus x and is a direct parametric plot of Eq. (6a) and (6b), Fig. 1c represents
x versus u and is a direct plot of Eq. (6a), Fig. 1d represents H(x, a) versus u and is a direct plot of Eq. (6b).
(To obtain these graphs a specific value of a was used, of course.)

It is pertinent to point out that even though x is considered to be a physical independent variable, both x and
H(x, a) are functions of the geometric independent variable, u. It is significant that the single point, x ¼ a, of
Fig. 1b has been expanded into the finite interval, aouoa+1, of Figs. 1c and d.

Note: Matlab was used for the plots because it makes a clear distinction between the step with a riser and the
step without a riser and so does the TI 92 graphics calculator. A plot of the riserless step, Fig. 1a, in another
software or another graphics calculator may result in a trace at the jump point making it indistinguishable
from the step with a riser.
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4. Proposed parametric equations of the Dirac delta

Differentiating the unit step with a riser

dHðx; aÞ

dx
¼

dHðx; aÞ

du

du

dx
. (7)

Differentiating Eq. (6b) and (6a), respectively:

dHðx; aÞ

du
¼ hðu; aÞ � hðu; aþ 1Þ, (8)

dx

du
¼ 1� hðu; aÞ þ hðu; aþ 1Þ. (9)

Substituting Eqs. (8) and (9) into Eq. (7) yields what is hereby proposed as the parametric representation of
the Dirac delta:

dðx; aÞ ¼
hðu; aÞ � hðu; aþ 1Þ

1� hðu; aÞ þ hðu; aþ 1Þ
, (10a)

x ¼ u� hðu; aÞ u� að Þ þ hðu; aþ 1Þ u� aþ 1ð Þ
� �

. (10b)

Obviously, Eq. (10a) and (10b) must be considered simultaneously. Eq. (10b) is the same as Eq. (6a).

4.1. Plots of the proposed representation

The proposed parametric representation of the Dirac delta may be considered to be made up of three
component functions of the parameter u, namely, the numerator, dH(x,a)/du, the denominator, dx/du, and the
independent variable, x.

4.1.1. Plots of the component functions versus the parameter

Fig. 2a is a direct plot of the numerator, Eq. (8), Fig. 2b is a direct plot of the denominator, Eq. (9), and
Fig. 2c is a direct plot of the independent variable, x, Eq. (10b). All three are functions of the parameter u and
have been plotted as such.

4.1.2. Parametric plots

Both the numerator and the denominator of the proposed representation may be termed displaced point

functions of the independent variable, x. Nonetheless, a plot of these functions is possible within the limitation
imposed by the smallest plottable increment (SPI). The SPI in the software used, Matlab, is the one that will
not leave a trace of the ‘‘jump’’ of the displaced point and, in this case, it is equal to 0.01 while the total length
of the abscissa plotted is 3.0, i.e., the gap is 1/300th of the width of the graph. Fig. 3a is the parametric plot of
the numerator equation (8) and Fig. 3b is the parametric plot of the denominator equation (9) both of them
versus the independent variable x, Eq. (10b). In the original direct plots, the displaced points are clearly there
but they are so small that a dot, with a much larger diameter, was printed on top of each one of them to make
sure that they will be distinguishable in the final printed copies of this paper. The gaps ‘‘left’’ by the displaced
points, which are shown are the original.

But the proposed representation of the delta function may also be plotted within the limitation of the SPI
and the understanding that no matter how much the ordinate scale is compressed no displaced point will
appear since it is at infinity. Fig. 4 is the direct parametric plot of the Dirac delta, Eq. (10a) versus the
independent variable x, Eq. (10b). In this case the vertical scale was compressed to the point, where the
maximum value of the ordinate within the plot is, as shown, 10� 109. The software warns about a division by
zero but, nonetheless, it produces the plot.

These plots have also been obtained in the TI-92 graphics calculator, with the advantage that the plotting is
witnessed as it proceeds. As in the case of the computer plots, the displaced points are very tenuous. However,
it is interesting to see the parametric plot of the Dirac delta proceed up to the beginning of the gap where it
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Fig. 3. Plots of the component (displaced point) functions of the Dirac delta versus the independent variable x: (a) the numerator, a direct

plot of parametric Eq. (8) versus Eq. (10b), (b) the denominator, a direct plot of parametric Eq. (9) versus Eq. (10b).

Fig. 2. Plots of the component functions of the Dirac delta versus the parameter u: (a) the numerator, a direct plot of Eq. (8), (b) the

denominator, a direct plot of Eq. (9), and (c) the independent variable, a direct plot of Eq. (10b).
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Fig. 4. The proposed Dirac delta function, a direct plot of parametric Eq. (10a) versus Eq. (10b) with a greatly compressed ordinate scale.
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stops and, after a considerable length of time, it resumes drawing the graph on the other side of the gap. In the
TI-92 plots one unit was added to the function, whether it was the numerator, the denominator or the delta
itself, so as to displace the graph away from the axis of abcissae in order to make the gap visible.

Again, it must be pointed out that these results are not obtainable with all software and neither are they
obtainable with all graphics calculators.

It is worth noticing that the Dirac delta has been represented by a quotient, Eq. (10a), because this is
what makes possible its handling without dealing with infinity directly, as will become apparent in the
development of the procedure and the examples. Also, a single point, x ¼ a, of Figs. 3 and 4 is represented
by a finite interval, aouoa+1, of Fig. 2, and this is what makes possible the handling of the Dirac delta
without dealing with infinitesimals directly. These two features will be fully exploited in the following
developments.

5. Adequacy of the representation

5.1. Compliance with the definition

Eq. (10) have the values:

x ¼ u; dðx; aÞ ¼ 0; uoa;

x ¼ a; dðx; aÞ ¼ 1; aouoaþ 1;

x ¼ u� 1; dðx; aÞ ¼ 0; u4aþ 1:

(11)

Thus, Eq. (10) conform to the values of the definition of the Dirac delta.

5.2. Area

The area under the proposed function is

A ¼

Z þ1
�1

dðx; aÞdx ¼

Z þ1
�1

dðx; aÞ
dx

du
du. (12)

Substituting Eq. (9) and (10a) into Eq. (12) and simplifying yields

A ¼

Z þ1
�1

hðu; aÞ � hðu; aþ 1Þ½ �du (13)
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or equivalently,

A ¼

Z a

�1

ð0Þduþ

Z aþ1

a

ð1Þduþ

Z þ1
aþ1

ð0Þdu ¼ 1. (14)

It is clear that the proposed function has the same area as the Dirac delta.

5.3. Fundamental or ‘‘sifting’’ property

The proposed function will now be tested in connection with the so-called ‘‘sifting’’ property of the Dirac
delta: Z þ1

�1

dðx; aÞf ðxÞdx ¼

Z þ1
�1

dðx; aÞf ðxÞ
dx

du
du. (15)

Substituting Eqs. (9) and (10a) into Eq. (15) and simplifying yieldsZ þ1
�1

dðx; aÞf ðxÞdx ¼

Z þ1
�1

hðu; aÞ � hðu; aþ 1Þ½ �f ðxÞdu. (16)

But in accordance with Eq. (10b) and Fig. 2c,

x ¼ a at aouoaþ 1. (17)

Consequently, Z þ1
�1

dðx; aÞf ðxÞdx ¼

Z a

�1

0ð Þduþ

Z aþ1

a

f ðaÞduþ

Z 1
aþ1

0ð Þdu, (18)

‘
Z þ1
�1

dðx; aÞf ðxÞdx ¼ f ðaÞ. (19)

Eq. (19) is the fundamental or ‘‘sifting’’ property of the Dirac delta [17], and thus the proposed
representation also complies with it.

5.4. Laplace transform

Up to this point, the independent variable has been designated by x assuming that it is dimensionless.
However, a procedure to solve impulsive dynamic systems will be presented, where the independent variable is,
of course, the time, t. The development of this procedure is based on the proposed parametric representation
of the Dirac delta, which requires the independent variable to be dimensionless. Furthermore, the t domain of
the Laplace transform very often refers to time. In view of this the following dimensionless time will be used:

t ¼
t

b
; t0 ¼

t0

b
. (20)

b has the same units as t and depends on the characteristics of the specific system being considered. Making
use of Eq. (20),

dðt; t0Þ ¼
dHðt; t0Þ

dt
¼

dHðt; t0Þ

bdt
. (21)

It is worth emphasizing that d(t,t0) has units of (time)�1. Now introducing the parameter u:

dðt; t0Þ ¼
dHðt; t0Þ

bdu

du

dt
(22)

and converting Eqs. (8)–(10), respectively:

dHðt; t0Þ

du
¼ hðu; t0Þ � hðu; t0 þ 1Þ, (23)
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dt
du
¼ 1� hðu; t0Þ þ hðu; t0 þ 1Þ, (24)

bdðt; t0Þ ¼
hðu; t0Þ � hðu; t0 þ 1Þ

1� hðu; t0Þ þ hðu; t0 þ 1Þ
, (25a)

t ¼ u� hðu; t0Þ u� t0ð Þ þ hðu; t0 þ 1Þ u� t0 þ 1ð Þ½ �. (25b)

Eq. (25) constitute the parametric representation of the dimensionless Dirac delta. The Laplace transform of
the Dirac delta is

L dðt; t0Þ½ � ¼

Z 1
0

dðt; t0Þe�st dt, (26)

and according to Eq. (22) and the first of Eq. (20):

L dðt; t0Þ½ � ¼

Z 1
0

dHðt; t0Þ

bdu

du

dt
e�sbtbdt, (27)

thus simplifying yields

L dðt; t0Þ½ � ¼

Z 1
0

dHðt; t0Þ

du
e�sbt du. (28)

Substituting Eqs. (23) and (25b) into Eq. (28):

L dðt; t0Þ½ � ¼

Z 1
0

hðu; t0Þ � hðu; t0 þ 1Þ½ �e�sb u�hðu;t0Þ u�t0ð Þþhðu;t0þ1Þ u� t0þ1ð Þ½ �f g du, (29)

or equivalently,

L dðt; t0Þ½ � ¼

Z
t0

0

0ð Þduþ

Z t0þ1

t0
e�sbt0 duþ

Z 1
t0þ1

0ð Þdu. (30)

Integrating and substituting the second of Eq. (20) into this yields

‘L dðt; t0Þ½ � ¼ e�st0 ; L dðt; 0Þ½ � ¼ 1. (31)

Thus, Eq. (31) agree with the Laplace transforms given in the tables [18].

6. Development of the procedure for the solution of impulsive systems

The operational procedure will be illustrated in connection with dynamic systems that have an impulsive
force as the forcing function:

F̂ ¼ Idðt; 0Þ. (32)

As implied by Eq. (32) for the sake of concreteness and simplicity the impulse is considered to occur at

t0 ¼ 0; ‘ t0 ¼ 0. (33)

Using this Eqs. (23)–(25) respectively, become

dHðt; 0Þ

du
¼ hðu; 0Þ � hðu; 1Þ, (34)

dt
du
¼ 1� hðu; 0Þ þ hðu; 1Þ, (35)

bdðt; 0Þ ¼
hðu; 0Þ � hðu; 1Þ

1� hðu; 0Þ þ hðu; 1Þ
, (36a)

t ¼ u� hðu; 0Þuþ hðu; 1Þðu� 1Þ. (36b)
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The procedure will be developed for the solution of any impulsive dynamic system which may be
represented by the following equation of motion:

P
dNy

dtN
þ f

dN�1y

dtN�1
;
dN�2y

dtN�2
; . . . ;

dy

dt
; y

� �
¼ Idðt; 0Þ ¼ I

dHðt; 0Þ

dt
, (37)

where P is a constant. The function f may be either linear or nonlinear. Also, all initial conditions are assumed
to be equal to zero.

The dimensionless displacement and the dimensionless time parameters are defined as

Y ¼
y

l
; t ¼

t

b
, (38)

where l and b are constants, which have a form that depends on the particular problem. b has the same units
as t and l has the same units as y. Substituting Eq. (38) into Eq. (37) yields

P
ldNY

bNdtN
þ f 1

dN�1Y

dtN�1
;
dN�2Y

dtN�2
; . . . ;

dY

dt
;Y

� �
¼ I

dHðt; 0Þ

bdt
. (39)

Multiplying Eq. (39) by b/I results in the following dimensionless equation:

Pl

IbN�1

� �
dNY

dtN
þ f 2

dN�1Y

dtN�1
;
dN�2Y

dtN�2
; . . . ;

d2Y

dt2
;
dY

dt
;Y

� �
¼

dHðt; 0Þ

dt
. (40)

Eq. (40) is replaced by the equivalent system of N state equations:

Pl

IbN�1

� �
dY N�1

dt
þ f 2 Y N�1;Y N�2; . . . ;Y 2;Y 1;Yð Þ ¼

dHðt; 0Þ

dt
,

dY N�2

dt
¼ Y N�1;

dY N�3

dt
¼ Y N�2; . . . ;

dY 1

dt
¼ Y 2;

dY

dt
¼ Y 1. (41)

The parameter u is introduced as follows:

Pl

IbN�1

� �
dY N�1

du

du

dt
þ f 2 Y N�1;Y N�2; . . . ;Y 2;Y 1;Yð Þ ¼

dHðt; 0Þ

du

du

dt
,

dY N�2

du

du

dt
¼ Y N�1;

dY N�3

du

du

dt
¼ Y N�2; . . . ;

dY 1

du

du

dt
¼ Y 2;

dY

du

du

dt
¼ Y 1, ð42Þ

and these equations are multiplied by dt/du to yield

Pl

IbN�1

� �
dY N�1

du
þ

dt
du

f 2 Y N�1;Y N�2; . . . ;Y 2;Y 1;Yð Þ ¼
dHðt; 0Þ

du
,

dY N�2

du
¼

dt
du

Y N�1;
dY N�3

du
¼

dt
du

Y N�2; . . . ;
dY 1

du
¼

dt
du

Y 2;
dY

du
¼

dt
du

Y 1. ð43Þ

Substituting Eqs. (34) and (35) into Eq. (43),

Pl

IbN�1

� �
dY N�1

du
þ 1� hðu; 0Þ þ hðu; 1Þ½ �f 2 Y N�1;Y N�2; . . . ;Y 2;Y 1;Yð Þ ¼ hðu; 0Þ � hðu; 1Þ,

dY N�2

du
¼ 1� hðu; 0Þ þ hðu; 1Þ½ �Y N�1;

dY N�3

du
¼ 1� hðu; 0Þ þ hðu; 1Þ½ �Y N�2; . . . ,

dY 1

du
¼ 1� hðu; 0Þ þ hðu; 1Þ½ �Y 2;

dY

du
¼ 1� hðu; 0Þ þ hðu; 1Þ½ �Y 1. (44)
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During the impulse instant, i.e., when 0ouo1 and t ¼ 0 Eq. (44) becomes

Pl

IbN�1

� �
dY N�1;i

du
¼ 1,

dY N�2;i

du
¼ 0;

dY N�3;i

du
¼ 0; . . . ;

dY 1i

du
¼ 0;

dY i

du
¼ 0. ð45Þ

Integrating these equations yields

Y N�1;i ¼
IbN�1

Pl

� �
uþ CN�1,

Y N�2;i ¼ CN�2; Y N�3;i ¼ CN�3; . . . ;Y 1i ¼ C1; Y i ¼ C. ð46Þ

The initial conditions are all equal to zero at the ‘‘beginning’’ of the impulse instant, i.e., u ¼ 0, (t ¼ 0 and
t ¼ 0), consequently all the constants of integration are also equal to zero so Eq. (46) becomes

Y N�1;i ¼
IbN�1

Pl

� �
u,

Y N�2;i ¼ 0; Y N�3;i ¼ 0; . . . ;Y 1i ¼ 0; Y i ¼ 0. ð47Þ

6.1. Parametric solution

At the ‘‘end’’ of the impulse instant, u ¼ 1 (t ¼ 0, and t ¼ 0), and beginning of post-impulse time:

Y N�1;p

��
u¼1; t¼0 ¼

IbN�1

Pl
,

Y N�2;p

��
u¼1; t¼0; Y N�3;p

��
u¼1; t¼0 ¼ 0; . . . ;Y 1p

��
u¼1; t¼0 ¼ 0; Y p

��
u¼1; t¼0 ¼ 0. ð48Þ

Eq. (48) is the initial conditions of post-impulse time.
Substituting u41 (t40 and t40 ) into the first of Eq. (44) yields the equation of post-impulse time:

Pl

IbN�1

� �
dY N�1;p

du
þ f 2 Y N�1;p; Y N�2;p; . . . ;Y 1p; Y p

� 	
¼ 0,

dY N�2;p

du
¼ Y N�1;p;

dY N�3;p

du
¼ Y N�2;p; . . . ;

dY 1;p

du
¼ Y 2;p;

dY p

du
¼ Y 1;p

or

Pl

IbN�1

� �
d

du

dN�1Y p

dtN�1

 !
þ f 2

dN�1Y p

dtN�1
;
dN�2Y p

dtN�2
; . . . ;

dY p

dt
;Y p

 !
¼ 0

d

du

dN�2Y p

dtN�2

 !
¼ Y N�1;p;

d

du

dN�3Y p

dtN�3

 !
¼ Y N�2;p; . . . ;

d

du

dY 1;p

dt

� �
¼ Y 2;p;

dY p

du
¼ Y 1;p, ð49Þ

but

d

du
¼

dt
du

d

dt
. (50)

According to Eq. (36b) at post-impulse time,

u41; t ¼ u� 1 (51)

and according to Eq. (51),

u41;
dt
du
¼ 1. (52)
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Substituting Eq. (52) into Eq. (50) results in

u41;
d

dt
¼

d

du
(53)

and, in view of Eq. (53), Eq. (49) are the equivalent of the following single equation:

Pl

IbN�1

� �
dNY p

duN
þ f 2

dN�1Y p

duN�1
;
dN�2Y p

duN�2
; . . . ;

dY p

du
;Y p

 !
¼ 0. (54)

The post-impulse displacement Yp(u) may be obtained by solving Eq. (54) subject to the post-impulse initial
conditions, Eq. (48). Yi(u) is the last of Eq. (47). Proceeding as in Eq. (5) the complete parametric solution is

Y ðuÞ ¼ hðu; 0ÞY iðuÞ þ hðu; 1Þ �Y iðuÞ þ Y pðuÞ
� �

. (55)

Obviously, in the case of linear problems, the equation of the impulse instant is related to the particular
integral and the post-impulse equation is the homogeneous equation.
6.2. Direct solution

According to the definition of the numerical values of the Dirac delta, at post-impulse time:

t40; dðt; 0Þ ¼ 0. (56)

Substituting Eq. (56) into Eq. (37) yields the post-impulse equation

t40; P
dNyp

dtN
þ f

dN�1yp

dtN�1
;
dN�2yp

dtN�2
; . . . ;

dyp

dt
; yp

 !
¼ 0. (57)

Substituting Eq. (38) into Eq. (48) yields the post-impulse initial conditions in a form appropriate for this
solution

dN�1yp

dtN�1

�����
t¼0

¼
I

P
,

dN�2yp

dtN�2

�����
t¼0

¼ 0;
dN�3yp

dtN�3

�����
t¼0

¼ 0; . . . ;
dyp

dt

����
t¼0

¼ 0; ypð0Þ ¼ 0. ð58Þ

Solving the post-impulse Eq. (57) subject to the post-impulse initial conditions (58) yields the direct solution

y ¼ hðt; 0ÞypðtÞ. (59)

The first factor, h(t,0), is included because there is no process for to0.
Note: In the development of the procedures, in order to neither lose sight of the basic idea nor complicate

the notation, all the initial conditions were assumed to be zero. If they are not, they are simply added, of
course.
7. The direct procedure in words

Although both solutions are based on the proposed parametric representation, it is quite clear that the direct
solution is much easier to obtain than the parametric solution, among other things, because it does not require
conversion to dimensionless quantities. Indeed the direct procedure is so simple that it is well worth putting it
in words.

The characteristics of the problem that it is possible to solve with the procedure are: the system can be
modeled by and Nth-order differential equation of motion with an impulse excitation, either linear or with
nonlinearities in the terms containing derivatives of order less than N, and all initial conditions equal to zero.
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Procedure: Solve the post-impulse equation, i.e., the original differential equation of motion with zero
excitation, for the following post-impulse initial conditions: for the order N�1 derivative, the magnitude of the
impulse divided by the coefficient of the term containing the Nth-order derivative; and for all the rest, zero.

See ‘‘note’’ at the end of Section 6.2.

8. Examples of solutions

The following solutions are of an elementary nature. However, they are presented here to reinforce the
arguments referring to the adequacy of the representation, and to illustrate both the application and the
validity of the procedure.

8.1. Example of a linear, 3rd-order system

In order to illustrate the solution of a higher-order system, this example referring to a mechanical system
includes feedback control.

Fig. 5 is the block diagram of an ‘‘industry standard’’ position control system [19]. An external step
disturbance torque becomes an impulse torque internally. The displacement y(t) will be obtained (in terms of
the roots of the characteristic equation) for the reference position, yr ¼ 0.

Nomenclature used in Section 8.1 is as follows:

m rotational viscous friction coefficient, Nm s
J moment of inertia of motor rotor and load, Nm s2

K position proportional gain, s�1

Ki velocity integral gain, V
Km ¼ KT=Ra motor gain ( armature inductance neglected [20]), NmV�1

Kp velocity proportional gain, V s
KT torque constant of motor, NmA�1

Ra armature resistance of motor, O
TD ¼ Td H(t,0) step disturbance torque, Nm
Td magnitude of step disturbance torque, Nm
Tm motor torque, Nm
V motor voltage, V
y controlled position, rad
yr reference position, rad
o output velocity, rad s�1

oi input velocity, rad s�1

From the block diagram, the differential equation of motion is established thus,

J
d3y
dt3
þ ðmþ KmKpÞ

d2y
dt2
þ ðKmKpK þ KmKiÞ

dy
dt
þ KmKiKy ¼ �

dTD

dt
. (60)
s

Ki
Kp +

Km
K V 

TD

�

_ 

_ 

+ 
s

1�r Tm

�Js

1

+
+ _ 

�

+ 

�i

Fig. 5. Example from Section 8.1. Block diagram of a position control system [19].
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The step disturbance torque may be expressed as

TD ¼ TdHðt; 0Þ (61)

substituting into the equation of motion:

J
d3y
dt3
þ ðmþ KmKpÞ

d2y
dt2
þ ðKmKpK þ KmKiÞ

dy
dt
þ KmKiKy ¼ �Tddðt; 0Þ, (62)

the order of the equation is

N ¼ 3, (63)

the post-impulse equation is Eq. (62) with zero excitation:

J
d3y
dt3
þ ðmþ KmKpÞ

d2y
dt2
þ ðKmKpK þ KmKiÞ

dy
dt
þ KmKiKy ¼ 0, (64)

the post-impulse initial conditions are for the order N�1 ¼ 2 derivative:

€y 0ð Þ ¼
magnitude of the impulse

coefficient of the Nth order term
¼ �

Td

J
, (65a)

for the order N�2 ¼ 1 and N�3 ¼ 0 derivatives, respectively:

_y 0ð Þ ¼ 0,

y 0ð Þ ¼ 0. ð65bÞ

Eq. (64) is to be solved subject to initial conditions, Eq. (65). The form of the solution depends on the
numerical values of the coefficients, but, in terms of the roots of the characteristic equation: r1, r2 and r3, the
displacement is

y ¼ hðt; 0Þ
Td

J

ðr2 � r3Þe
�r1t þ ðr3 � r1Þe

�r2t þ ðr1 � r2Þe
�r3t

r21ðr3 � r2Þ þ r22ðr1 � r3Þ þ r23ðr2 � r1Þ
, (66)

which is equivalent to the solution obtained by use of the Laplace transform, i.e.:

y ¼ �hðt; 0Þ
Td

J

e�r1t

ðr2 � r1Þðr3 � r1Þ
þ

e�r2t

ðr1 � r2Þðr3 � r2Þ
þ

e�r3t

ðr1 � r3Þðr2 � r3Þ


 �
. (67)

8.2. Example of nonlinear, 2nd-order system

The response of a large oscillation pendulum subjected to a linear impulse of magnitude I will be obtained in
the form of the velocity, v as a function of the height, y, of the oscillating mass. Referring to Fig. 6, the
equation of motion is

mL
d2y
dt2
þmg sin y ¼ Idðt; 0Þ, (68)

the order of the equation is

N ¼ 2. (69)

The post-impulse equation is Eq. (68) with zero excitation:

L
d2y
dt2
þ g sin y ¼ 0 (70)

or

Lo
do
dy
þ g sin y ¼ 0. (71)
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Fig. 6. Example from Section 8.2. Geometry of the large oscillation pendulum, point (0,L) is the positon of the pivot point, point (0, 0) is

the equilibrium position of the center of mass, and point (x, y) is the instantaneous position of the center of mass.
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The post-impulse initial conditions are for the order N�1 ¼ 1 derivative:

_y 0ð Þ ¼ oð0Þ ¼
magnitude of the impulse

coefficient of the Nth order term
¼

I

mL
(72a)

and for the order N�2 ¼ 0 derivative

yð0Þ ¼ 0. (72b)

Integrating Eq. (71) subject to the initial conditions of Eq. (72) results in

o ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g

L
cos y� 1ð Þ þ

I2

m2L2

s
(73)

multiplying by L,

v ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gL cos y� 1ð Þ þ

I2

m2

s
. (74)

But in accordance with Fig. 6

y ¼ L 1� cos yð Þ, (75)

‘ v ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2

m2
� 2gy

s
. (76)

This relation was obtained without the need of any dimensionless quantities. However, in order for the plot
to represent a general solution, it is convenient to convert Eq. (76) into its dimensionless form

m

I
v ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

gm2

I2
y

s
(77a)
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Fig. 7. Example from Section 8.2. Velocity versus displacement for the large oscillation pendulum subjected to an impulse of magnitude I,

a plot of Eq. (77).
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but symmetry requires that additionally

m

I
v ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

gm2

I2
y

s
, (77b)

see Fig. 7.

9. Discussion

As is apparent from the development of the procedure and the examples, the proposed representation of the
Dirac delta, when applied to the solution of an impulsive vibrating system, separates the equation of motion
into two distinct equations: the impulse-instant equation and the post-impulse time equation. No time flows
during the impulse instant, but changes take place and it is convenient to express them in terms of a variable.
Parameterization provides such a variable: the parameter u. Furthermore, the post-impulse equation may be
expressed in terms of the same variable. This provides a link between the two equations, i.e., the condition of u

and its derivatives during the transition or interphase is common to both equations.
Eq. (47) formally establish that the physical components associated with any derivative of order less than N,

the order of the differential equation of motion, do not participate in the dynamic process that takes place
during the impulse instant and, consequently they do not have any effect on the initial conditions of the post-
impulse equation. In the case of the control system example in Section 8.1 only the combined moment of
inertia of the motor rotor and the load has this effect, but neither the motor gain, nor the controllers, nor the
rotational friction do. In the case of the large oscillation pendulum example in Section 8.2, again, only the
mass of the pendulum does have the effect, but the weight does not. However, all of the elements in both
systems of the examples participate in the post-impulse process.

Problems relating to linear impulsive vibrating systems may be solved by use of the Laplace transform but
this requires going from the t to the s domain and back and, sometimes, it is necessary to deal with partial
fractions. None of that is required with the proposed procedure. As is well known, no nonlinear problem may
be solved by the Laplace transform method.

A large class of nonlinear problems may be solved by the proposed method but the nonlinearities must be dealt
with by using the usual methods. However, the nonlinearities are present only in the post-impulse equation which
has a right member equal to zero. This feature may simplify matters as it did in the example in Section 8.2, where
the post-impulse equation is indeed nonlinear but, because its right member is equal to zero, it is separable.
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10. Conclusions

A very simple concept, i.e., a riser in connection with the Heaviside unit step function made it possible to
carry out a conventional differentiation of this function. The introduction of the riser required a parametric
representation of the unit step. The resulting derivative, in the form of a pair of parametric equations, has been
proposed herein to represent the Dirac delta. The proposed delta representation has been shown to possess the
same functional values and the same area under the curve as those specified in the definition, it also complies
with the sifting property. Furthermore, the Laplace transform obtained from this representation coincides
with that given in the tables in its most general form.

Using this parametric representation, a rational and very simple procedure for the solution of a wide variety
of dynamic impulsive systems has also been presented. This procedure is applicable to linear problems but also
to a large class of nonlinear problems, i.e., when in the differential equation of motion the nonlinearities are
present in the terms containing the displacement or any time derivative of one order less than that which
characterizes the differential equation itself.
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